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1 Introduction

Sudoku is a puzzle presented on a square grid that is usually9 × 9, but is sometimes16 × 16 or other
sizes. In this document, we will consider only the9 × 9 case, although almost everything that is said
can easily be extended to puzzles with different dimensions. Sudoku puzzles can be found in many daily
newspapers, and there are thousands of references to it on the internet.
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Figure 1: An easy sudoku puzzle

The original grid has some of the squares filled with the digits from1 to 9 and the goal is to complete the
grid so that every row, column and3×3 sub-grid (of which there are9) contains each of the digits exactly
once. Some initial configurations admit zero solutions and others admit multiple solutions, but these are
usually considered to be invalid puzzles.

In figure 1 a (relatively easy) puzzle appears on the left. If you’ve never tried to solve a sudoku puzzle,
it would be very informative to try to solve this one now, and see what strategies you can come up with
before you read the rest of this article. It will probably take more time than you think, and you will get
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much better with practice. And if you are a beginner, even if you’re used to working the New York Times
Sunday crossword in pen, use a pencil the first time you try sudoku!

Sudoku is interesting both as a logical exercise (What are good strategies for finding a solution?) and as
a mathematical object (How many sudoku grids are there? How many are essentially different? What
is the underlying mathematics and logic behind some solution techniques?). All of these aspects will be
explored here.

We will first discuss various solution techniques and any related mathematics will be discussed along with
the technique. At the end we’ll include some information that is mostly mathematical and probably not
of too much help in finding sudoku solutions.

In what follows, we will use the following terminology. There is a large literature on sudoku on the
internet, and as far as possible, we will try to use the same terminology in this article as that which is
commonly used on the internet.

• A “square” refers to one of the81 boxes in the sudoku grid, each of which is to be filled eventually
with a digit from1 to 9.

• A “block” refers to a3 × 3 sub-block of the main puzzle in which all of the numbers must appear
exactly once in a solution. We will refer to a block by its columns and rows. Thus blockghi456

includes the squaresg4, g5, g6, h4, h5, h6, i4, i5 andi6.

• A “candidate” is a number that could possibly go into a squarein the grid. Many methods we will
examine will eliminate candidates one after the other untilthere is a unique number that can go in
a square.

• Sometimes an argument will apply equally well to a row, column or block, and to keep from having
to write “row, column or block” over and over, we may refer to it as a “virtual line”. A typical use
of “virtual line” might be this: “If you know the values of8 of the9 entries in a virtual line, you can
always deduce the value of the missing one.” In the9 × 9 sudoku puzzles there are27 such virtual
lines.

• Sometimes you would like to talk about all of the squares thatcannot contain the same number as
a given square since they are in the same row, column, or block. These are sometimes called the
“buddies” of that square. For example, you might say something like, “If two buddies of a square
have only two possible candidates, then you can eliminate those as candidates for the square.”

2 Obvious Strategies

We will begin with a few strategies that are in a sense totallyobvious, although searching for them in a
puzzle may sometimes be difficult, since there are a lot of things to look for. Most puzzles have a difficulty
rating, and almost all easy puzzles and many intermediate puzzles can be completely solved using only
the techniques mentioned in this section. We’ll begin with the most obvious observations and proceed to
a few that are a bit more interesting. The methods are presented roughly in order of increasing difficulty
for a human. For a computer, completely different approaches are possible and are often simpler.
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2.1 Unique Missing Candidate

If eight of the nine elements in any row, column or block (or “virtual line”) are already determined, the
final element has to be the one that is missing. This techniqueis used a lot toward the end of a solution
when most of the squares are already filled in. A similar obvious statement is this: If eight of the nine
values are impossible in a given square, that square’s valuemust be the ninth.

2.2 Naked Singles
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Figure 2: Candidate Elimination and Naked Singles

For any given sudoku position, imagine listing all the candidates from1 to9 in each unfilled square. Then,
for every square whose valuev is determined, cross off every instance ofv as a possible candidate in the
row, column and block (or, in all three of the virtual lines) to which that square belongs. The remaining
values in each square represent possible values that could possibly be inserted there. If, after such an
elimination of the impossible candidates, only a single possible value remains, that situation is referred to
as a “naked single” and that one remaining value can be assigned to the square.

In the example on the left side of figure 2 we see a sudoku puzzlewhere the larger numbers in the squares
represent values that are already filled in. Squares whose values are not yet determined are filled with a
list of possible candidates, where the values in the completed squares have been used to eliminate some
values. After these obvious candidate eliminations have occurred, we can see that the puzzle contains
three naked singles ate2 andh3 (where a2 must be inserted), and ate8 (where a7 must be inserted).

Notice that once you have filled in these values, other naked singles will appear. For example, as soon as
the2 is inserted ath3, you can eliminate the2’s as candidates in its row, column and block, and when this
is done,i3 will become a naked single that must be filled with8. The position on the right side of figure 2
shows the result of the previous puzzle after the three squares mentioned in the previous paragraph have
been filled and the obvious candidates have been eliminated from the unfilled squares.
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2.3 Hidden Singles

Sometimes there are cells that do, in fact, have only one possible value based on the situation, but a simple
elimination of candidates in that square’s row, column and block do not make it obvious. If you reexamine
the situation on the left side of figure 2, there is a hidden single in squareg2 whose value must be5. The
two 5’s in b1 ande3 require that the5 that must appear in the lower-left block (ghi123) must occur in
column2. But there is only one available square in that block’s column 2 that is not yet filled. Thus5 can
be placed in squareg2. The5 in squareg2 is “hidden” in the sense that without further examination, it
appears that the values1, 2, 5, 8 and9 are all possible candidates.

An easy way to find hidden singles is to look in every virtual line for a candidate that appears in only one
of the squares. If that occurs, you’ve found a hidden single.

The example above is for a hidden single in a block. The same thing can occur in any virtual line. Using
the same example in figure 2, there is a hidden single in squared9 where a3 must be placed. A3 must
appear somewhere in rowd, but3’s in the two leftmost blocks containing rowd already contain a3 so the
3 must go ind7, d8 or d9. Since squaresd7 andd8 are already filled,d9 contains a hidden single.

The application of any of the techniques in this section immediately assigns a value to a square. Most
puzzles that are ranked “easy” and many that are ranked “intermediate” can be completely solved using
only these methods.

The remainder of the methods that we will consider do not automatically allow you to fill in a square.
What they do is to eliminate certain candidates from certainsquares. Obviously, once all the candidates
but one have been eliminated, then the value to be placed in that square is completely determined.

3 Locked Candidates

Sometimes you can find a block where the only possible positions for a candidate are in one row (or
column) within that block. Since the block must contain the candidate, the candidate must appear in that
row (or column). But that means that you can eliminate the candidate as a possibility in the intersection
of that row (or column) with other blocks.

A similar situation can occur when a number that must go into arow or column can occur only within
one of the blocks that intersect that row or column. Thus the candidate must lie on the intersection of
the row/column and block and hence cannot be a candidate in any of the other squares that make up the
block.

All of these situations are illustrated in figure 3. The blockdef789 must contain a2, and the only places
this can occur are in squaresf7 andf8: both in rowf . Therefore2 cannot be a candidate in any other
squares in rowf , including squaref5 (sof5 must contain a3). Similarly, the2 in blockghi456 must lie
in column4 so2 cannot be a candidate in any other squares of that column, includingd4.

Finally, the5 that must occur in column9 has to fall within the blockdef789 so5 cannot be a candidate
in any of the other squaresd7, includingf7 andf8.
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Figure 3: Locked Candidates

4 Naked and Hidden Pairs, Triplets, Quads, . . .

These are similar to naked singles, discussed in section 2.2, except that instead of having only one can-
didate in a cell, you have the same two candidates in two cells(or, in the case of naked triplets, the same
three candidates in three cells, et cetera).

The naked pair, triplet or quad can be in the same virtual line, and when it occurs, those values must use
up all the squares. Thus those candidates are eliminated from any other square in that virtual line.

Figure 4 shows how a naked pair can be used. In squaresa2 anda8 the only candidates that appear are a2

and a7. That means that those squares must be filled with those numbers, in some order. But that means
that the2 and7 cannot be in any of the other squares in that row, so2 can be eliminated as a candidate in
a3 and both2 and7 can be eliminated as candidates ina9.

a

1 2 3 4 5 6 7 8 9

1
2

7

2 3
4 5

3
4 6 8 9

2

7

2 3
4 6
7

8 3 9 7
1 1

4
2 1 2

Figure 4: A Naked Pair

In the case of naked pairs, both squares must have exactly thesame two candidates, but in the case of
naked triplets, quads, et cetera, the only requirement is that the three values be theonly values appearing
in those squares in some virtual line. For example, if three entries in a row admit the following sets of
candidates:{1, 3}, {3, 7} and{1, 7} then it is impossible for a1, 3 or 7 to appear in any other square of
that row.

The idea is fairly simple and is illustrated in figure 5. In rowa squaresa2, a8 anda9 contain the naked
triple consisting of the numbers1, 3 and7. Thus those numbers must appear in those squares in some
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order. For that reason, the candidates1 and3 can be eliminated from squaresa4 anda5.
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Figure 6: A Hidden Triple

Hidden pairs, triples and quads are related to naked pairs, triples and quads in much the same way that
hidden singles are related to naked singles. In figure 6 consider rowi. The only squares in rowi in which
the values1, 4 and8 appear are in squaresi1, i5 andi6. Therefore we can eliminate candidates2 and6

from squarei1 and candidate3 from i5.

Remember, of course, that these hidden sets can appear in anyvirtual line: a row, column, or block.
There is also no reason that there could not be a naked or hidden quintet, sextet, and so on, especially for
versions of sudoku that are larger than9 × 9.

5 X-Wings and Swordfish

An x-wing configuration occurs when the same candidate occurs exactly twice in two rows and in the
same columns of those two rows. (Or similarly, if you exchange the words “row” and “column” in the
previous sentence.) In the configuration on the left in figure7 the candidate3 occurs twice in rowsc and
h and in those two rows, it appears in columns2 and7. It does not matter that the candidate3 occurs in
other places in the puzzle.

The squares where the x-wing candidate (3, in this case) can go form a rectangle, so a pair of opposite
corners of that rectangle must contain them. In the example,this means that the3’s are either inc2 and
h7 or they are inc7 andh2. Perhaps the fact that connecting the possible pairs would form an ‘X’, like
the X-wing fighters in Star Wars gives this strategy its name.

In any case, since the two corners contain the candidate, no other squares in the columns or rows that
contain the corners of the rectangle can contain that candidate. In the example, we can thus conclude that
3 cannot be a candidate in squaresa7, f7 or i2.

A swordfish is just like an x-wing except that there must be three rows/columns with the three candidates
appearing in at most three columns/rows. As was the case withnaked and hidden triples, for a swordfish
there is no requirement that the candidate to be in all three positions. The reasoning is similar to that used
for the x-wing, however: once you find a swordfish configuration, the candidate cannot appear in any
other squares of the three columns and rows.

A swordfish configuration appears on the right in figure 7. In this case, the candidate is7, and the columns
that form the swordfish are2, 5 and8. The value7 appears only in rowsa, f andi. One7 must appear
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Figure 7: X-Wing (left) and Swordfish

in each of these rows and and each of the columns, so no other squares in those rows and columns can
contain a7. Thus the candidate7 can be eliminated froma1, f1, f6, i6 andi9.

Of course there is nothing special about a3×3 configuration; “super-swordfish” with 4, 5, or 6 candidates
might be possible, but they are rare but not particularly difficult to spot. The “super-swordfish” with4
rows and4 columns is sometimes called a “jellyfish”. If you are playingon a standard9 × 9 grid, the
most complex situation you would need to look for would be a jellyfish, since if there were a5 × 5

super-swordfish, there would have to be in addition a4× 4 or smaller swordfish in the remaining rows or
columns. It’s too bad that there’s no real need for the5× 5 super-swordfish, since in the web “literature”,
it’s called a “squirmbag”.

6 The XY-Wing

The basic idea of the xy-wing is this: Sometimes a square has two candidates. If we assume that the first
is used, then that forces a certain conclusion. If, by assuming that the second is true, the same conclusion
is forced, then that conclusion must be true since no matter how the initial choice is made, the conclusion
must follow.

In the configuration in figure 8, suppose that there are two possible candidates in squaresb2, b5 ande2,
as shown. Consider the contents of squareb2. If X is there, then there must be aZ in e2 and therefore
Z cannot be a candidate ine5. But the other possibility is thatb2 is aY . In this case,b5 must beZ and
again,e5 cannot beZ. Thus, in a configuration like this, you can eliminateZ as a candidate in squaree5.

In a similar way, consider the configuration on the left in figure 9. If eitherX orY is true, the three squares
indicated by asterisks cannot haveZ as a candidate. In a similar way, by examining the configuration on
the right in the same figure,Z is eliminated as a candidate in two more squares indicated byasterisks.
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Obviously, the two configurations in figure 9 can be combined to make figure 10 whereZ can be elimi-
nated as a candidate in any of the squares marked with an asterisk.

An example of an xy-wing in an actual puzzle appears in figure 11. Notice that in squaresd8 andf7 (both
in the same block,def789) and in squared1 we have candidates{8, 9}, {3, 9} and{8, 3}, respectively.
Because of this, we can eliminate3 as a candidate from squaresd7, f1 andf2.

7 Coloring and Multi-Coloring

Coloring and multi-coloring are techniques that infer colors based on logical chains of deduction. The
coloring method, especially, is simple enough that it can bedone by hand.

7.1 Simple Coloring

Consider the example in figure 12 where we consider a few squares that contain the candidate1. Let’s
assume for now that these are the only possible locations for1 in the puzzle. Certain virtual lines contain
exactly two places where the candidate1 can go: rowb, row i, column3 and blockdef123. In each of
these virtual lines, exactly one of the possible squares cancontain a1 and once it is selected, the other
cannot.

But this creates a sort of “chain” iff1 contains1, thene3 must not, and sincee3 must not,b3 must, sob6
must not,i6 must, andi9 must not. If, on the other hand,f1 does not contain a one, the same series of
virtual line interactions will force an alternating set of conclusions and every square in the chain will be
forced to have the opposite value. In the figure we’ve marked the squares with+ and− according to the
assumption thatf1 does contain a1, but of course it may be the case thatf1 does not contain1, and all
the+ and− signs would be interchanged. Rather than using the+ and− characters that imply presence
or absence of a value it is easier simply to imagine coloring each square in the chain black or white, and
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Figure 11: XY-Wing Example

either all the black squares have a1 and all the white squares do not, or the opposite.

Suppose now that for some candidate you’ve discovered such achain1 and have colored it in this alternat-
ing manner.

It may be that there are additional squares where the candidate could possibly occur that do not happen to
lie in the colored chain. In the example above, suppose squaref1 is colored black and so squarei9 must
be colored white. Consider the squaref9 that lies at the intersection off1’s row andi9’s column. Since
f1 andi9 have opposite colors, exactly one of themwill contain a1, and therefore it is impossible for the
squaref9 to contain a1, so1 can be eliminated as a possible candidate in that square.

There’s nothing special about a row-column intersection. Any time two oppositely-colored squares “in-
tersect” via virtual lines or any sort in another square, thecandidate can be eliminated as a possibility in
that square.

This is probably easier to see with the concrete example displayed on the left in figure 13 where we
consider the interactions between squares with1 as a possible candidate. In rowd, d1 andd5 are the only
occurrences of candidate1, so we colord5 black andd1 white. Butd1 andf3 are the only possibilities
for 1 in blockdef123, so sinced1 is white,f3 is black. By similar reasoning, sincef3 is black,g3 and

1For astute readers, it may not really be a chain, but it could be a tree, or even have loops, as long as the black/white alternation
is preserved.
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Figure 12: Simple Coloring

f8 are white. Sincef8 is white,e7 is black, and sincee7 is black,c7 is white. That’s a pretty complicated
chain, but here’s what we’ve got: black:{d5, f3, e7} white: {d1, g3, f8, c7}. A grid that displays just
the colored squares appears on the right in figure 13.

Squarec5 is at the intersection ofc7’s row andd5’s column, butc7 is white andd5 is black, so1 cannot
be a candidate in squarec5. Similarly, squareg5 is in the same row asg3 and same column asd5 which
are white and black, respectively, so1 also cannot be a candidate ing5.

7.2 Multi-Coloring

Sometimes a position can be colored for a particular candidate and multiple coloring chains exist, but
none of them are usable to eliminate that candidate from other squares. If there are multiple chains, it is
worth looking for a multi-coloring situation.

Consider the puzzle in figure 14. Assume that in the parts of the puzzle that are not shown there are no
other places that the candidate1 can occur. When this diagram is colored, there are two coloring chains.
Instead of using words like “black” and “white” we will used letters, likeA, B, a andb where theA and
a represent opposite colors, as do theB andb, and so on. In figure 14 rowsa andc and in column3 there
are only two possible locations for candidate1.

When this grid is colored, it will look something like this: squaresc1 andf3 have colorA and squarec3
has colora. Squarea2 has colorb and squarea5 has colorB. (Note that the colors assigned are arbitrary.
All that matters is that squaresc1 andf3 have the same color that is the opposite ofc3 and thata2 and
a5 have opposite colors that are different from the other assigned colors. Note that none of the other
squares with1 as a candidate can be colored, since all are in virtual lines with more than two squares that
potentially could contain the candidate1.

If we consider the color “a” as standing for the sentence: “Every square containing thecolora contains a
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Figure 14: Multi-coloring

1,” and so on, then we can write little logical expressions indicating the relationships among the various
colors when they are interpreted as sentences. The obvious ones are of the form: “a = ¬ A” or “ A = ¬
a” (where the logical symbol “¬” means “not”). In other words, ifa is true thenA is not, and vice-versa.

Although the values of non-opposite colors do not necessarily have anything to do with each other, in
figure 14, the paira andb, for example are linked, since they occur in the same block. If a is true, thenb
cannot be, and vice-versa, but it may be true that botha andb are false. We will express this relationship
as “a!b” and read it as “a excludesb”. Obviously, if a!b thenb!a2. Also, it’s obvious in the configuration
in figure 14 thatb!A.

Another way to think ofa!b is as “If a is true then so isB.” Similarly, it means “Ifb is true then so is
A.” If a!b then at least one ofa or b must be false. That means that at least one ofA or B must be true.
That means that any square at the generalized intersection of squares coloredA andB must not allow the

2If you examine the truth table fora!b you will find that it is equivalent to the “nand” (“A nand B” is the same as “not(A and
B)”) logical operator that’s heavily used in computer hardware logic designs.
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candidate since one of the two squares coloredA or B must contain the candidate. In figure 14, this means
that1 cannot be a candidate in squaref5.

To condense all of the above into a single statement, we know that if a!b for some candidate then any
square at the generalized intersection ofA andB cannot contain that candidate.

i

h

g

f

e

d

c

b

a

1 2 3 4 5 6 7 8 9

4 8 9 9 6 9 2 7 5
2 5 7 9 6

9 7 6 9 9 4 3
5 2 9 8 4 9 6 9 3

9 6 8 3 5 2 7 4 9

3 9 9 9 1 6 8 5 2
8 3 5 9 9 1 6 7
6 1 9 8 3 9 4
7 9 9 6 3 1 5 9 9

i

h

g

f

e

d

c

b

a

1 2 3 4 5 6 7 8 9

9
A

9
E

9

9
a

9
b

9

9 9 9
A

9
A

9
a

9
D

9 9
e

9
B

9
b

9
C

9
c

9
d

9 9 9
A

Figure 15: Multicoloring Example: Coloring on Right

But much more can be done. In complex situations, there may bemany independent color chains with
colorsA anda, B andb, C andc, and so on. When that occurs, we need to look for consequencesof the
following inference:

If a!b andB!c thena!c.

It’s not hard to see why: Ifa is true,b is not, soB is true, and the second exclusion implies thatc is not.
The reasoning is trivially reversed to show that ifc is true thena is not, so we obtaina!c.

Thus to do multi-coloring for a particular candidate, proceed as follows:

• Construct all possible color chains for the diagram.

• Find all exclusionary relationships from pairs of colors that share the same generalized lines.

• Take the collection of relationships and complete it to its transitive closure using the idea that if
(a!b andB!c) thena!c.

• For every exclusionary pair in the transitive closure, find generalized intersections of squares col-
ored with colors opposite to those in the pair, and eliminatethe candidate as a possibilty from all of
them.

Let’s look at a very complex multi-coloring application. See figure 15 where only the presence of squares
that admit the candidate9 are marked (all, of course, might admit other candidates). On the left is the
complete grid and on the right is a simplified version where only the squares admitting candidate9 are
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shown, and all of the color chains are displayed. It is an excellent exercise to look at the diagram on the
right to make certain that you understand exactly how all thecolor chains are constructed.

The next step in the application of multi-color is to find all the exclusionary pairs, and the initial list is the
following. Note that the “!” operation is commutative, so ifyou thinka!b should be in the list and it is
not, be sure to look forb!a as well.

A!E a!b D!e A!d A!C
A!c b!E A!D C!d

From these initial exclusions, a number of others can be deduced. For example, froma!b andA!d we can
conclude thatb!d. Note that to make this implication, we are implicitly usingthe fact thata!b andb!a are
equivalent.

In fact, if we make all such deductions, and then all deductions from those, and so on, there are ten
additional exclusions that we find:

b!d b!C b!c b!D C!e
A!A A!b b!e b!b A!e

For most of them, we need to look for generalized intersections of the opposites of the exclusionary
values. For example, sinceA!e and there is ana in c1 and aE in a4, then9 cannot be a candidate inc6.
Also, since we’ve gotA!A andb!b we can conclude thata andB are true. To make it easier to check the
consequences of these exclusionary implications, figure 16shows the complete solution to the puzzle in
figure 15.
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Figure 16: Solution to Multicoloring Example

8 Unique Solution Constraints

If you know that the puzzle has a unique solution, which any reasonable puzzle should, sometimes that
information can eliminate some candidates. For example, let’s examine the example in figure 17.

In row c, columns4 and6, the only possible candidates are1 and2. But in rowg, columns4 and6, the
candidates are1, 2 and8. We claim that8 must appear ing4 or g6. If it does not, then the four corners of
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Figure 17: Uniqueness Constraint

the squarec4, c6, g4 andg6 will all have exactly the same two candidates,1 and2, so we could assign the
value1 to either pair of opposite corners, and both must yield validsolutions. If there is a unique solution,
this cannot occur, so one ofg4 or g6 must contain the value8. But if that’s the case, squarei4 cannot be
8, so the candidate8 can be eliminated from squarei4. In addition, since eitherg4 or g6 must be8, g8

cannot be8 since it is in the same row as the other two.

In the same figure, a similar situation appears in another place. See if you can find it. Hint: it column-
oriented instead of row-oriented.
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7
2

7
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7

Figure 18: An illegal block

Let’s go back and see exactly what is going on, and from that, we’ll be able to find a number of techniques
that are based on the same general idea. Figure 18 shows a basic illegal block. Anything at all can occur
in the squares that are not circled, but note that an assignment of a2 or a7 to any of the circled squares
forces the values of the others in an alternating pattern. But any of the squares can be assigned a2 or a7

and the resulting pattern will be legal, and this means thereare two valid solutions to the puzzle.

This means that if some assignment causes an illegal block tobe formed, that assignment is impossible,
and we can use that fact to eliminate certain possibilities,as we did in the example in figure 17. Note that
the four corners must not only form a rectangle, but they mustbe arranged so that two pairs of adjacent
corners must lie within the same blocks. If the four corners lie in four different blocks, then constraints
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from those different blocks can force the values one way or the other.
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Figure 19: Uniqueness Considerations

Now let’s examine some variations of this theme. In the rest of the examples in this section, we’ll assume
that empty squares can be filled with any valid puzzle entries: empty or determined. In figure 19 on the
left we see something that is almost the same as what we saw in figure 18 and the only thing that makes
it legal is the presence of the possibility of a3 in squareb1. If it is not a 3, then we would have the
illegal block, so there must be a3 in squareb1. Note that if, in the figure, squareb1 had contained the
possibilities2, 3, 4, and7, at least the two possibilities2 and7 could still be eliminated as possibilities,
so only a3 or a4 could be entered in that square.

The example in the middle of figure 19 is similar to the original example in this section except that the
additional number occurs in two different blocks instead ofone. As before, at least one of those squares
must contain the number (3 in this case), so the value3 can be eliminated from any of the other squares
in that row (rowb, in this case), but not in either of the blocks, since the one that is forced to be3 might
be in the other block.

The example on the right in figure 19 illustrates another sortof deduction that could be made. We know
that at least one ofb1 andc1 must contain a number other than a2 or a 7, but we don’t know which
one. If we think of the combination of the two squares as a sortof unit, wedo know that this unit will
contain either a3 or a4. This two-square unit, together with squarea3 (which has3 and4 as its unique
possibilities) means that no other square in the blockabc123 can contain a3 or a4. If the 34 square had
been ina1 we could in addition eliminate3 and4 as candidates from any of the other squares in column
1 outside the first block.

Note that we can have both a3 and a4 in either or both squaresb1 andc1 in this example on the right. As
long as both occur, the argument holds. Also note that if the3’s and4’s appeared in rowb and the entries
in row c were both27, and the34 square were in rowb we could eliminate any more3’s and4’s in that
row.

9 Forcing Chains

This method is almost like guessing, but it is a form of guessing that is not too hard for a human to do.
There are various types of forcing chains, but the easiest tounderstand works only with cells that contain
two candidates.

The idea is this: for each of the two-candidate cells, tentatively set the value of that cell to the first value
and see if that forces any other two-candidate cells to take on a value. If so, find additional two-candidate
cells whose values are forced and so on until there are no moreforcing moves. Then repeat the same
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Figure 20: Forcing Chains

operation assuming that the original cell had the other value.

If, after making all possible forced moves with one assumption and with the other, there exists a cell that
is forced to the same value, no matter what, then that must be the value for that cell.

As an example, consider the example in figure 20, and let’s begin with cell b3 which can contain either a
1 or a3. If b3 = 1, theni3 = 3, soh2 = 9, soh4 = 1. On the other hand, ifb3 = 3 theni3 = 1 soi4 = 9

soh4 = 1. In other words, it doesn’t matter which value we assume thatb3 takes; either assumption leads
to the conclusion thath4 = 1, so we can go ahead and assign1 to cellh4.

10 Guessing

The methods above will solve almost every sudoku puzzle thatyou will find in newspapers, and in fact,
you will probably hardly ever need to use anything as complexas multi-coloring to solve such puzzles.
But there do exist puzzles that do have a unique solution, butcannot be solved using all the methods
above.

One method that will always work, although from time to time it needs to be applied recursively, is simply
making a guess and examining the consequences of the guess. In a situation that seems impossible, choose
a square that has more than one possible candidate, rememberthe situation, make a guess at the value for
that square and solve the resulting puzzle. If you can solve it, great—you’re done. If that puzzle cannot
be solved, then the guess you made must be incorrect, it can beeliminated as a candidate for that square,
and you can return to the saved puzzle and try to solve it with one candidate eliminated.

Obviously, when you try to solve the puzzle after having madea guess, you may arrive at another situation
where another guess is required, in which case a second levelof guess must be made, and so on. But since
the method always eventually eliminates candidates, you must arrive at the solution, if there is one. In
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Figure 21: A Very Hard Sudoku Puzzle

computer science, this technique is known as a recursive search. Figure 21 is an example of such a puzzle
that cannot be cracked with any of the methods discussed so far except for guessing. The solution to this
puzzle can be found in section 18.

11 Equivalent Puzzles

There is no reason that the numbers1 through9 need to be used for a sudoku problem. We never do any
arithmetic with them: they simply represent9 different symbols and solving the puzzle consists of trying
to place these symbols in a grid subject to various constraints.

In fact, the construction of a valid completed sudoku grid isequivalent to a graph-theoretic coloring
problem in the following sense. Imagine that every one of the81 squares is a vertex in a graph, and there
is an edge connecting every pair of vertices that lie in the same row, same column, or same block. Each
vertex will be connected to20 other vertices, so the sudoku graph will consist of81 · 20/2 = 810 edges.
Finding a valid sudoku grid amounts to finding a way to color the vertices of the graph with nine different
colors such that no two adjacent vertices share the same color.

Since the symbols don’t matter, we could use the lettersA throughI or any other set of nine distinct
symbols to represent what is essentially the same sudoku puzzle. If we take a valid grid and exchange the
numbers1 and2, this is also essentially the same puzzle. In fact, any permutation of the values1 through
9 will also yield an equivalent puzzle, so there are9! = 362880 versions of every puzzle available simply
by rearranging the digits.

If you were trying to calculate how many grids there are, a good approach would be to assume that the
top row consists of the numbers1 through9 in order, to count the number of grids of that type there are,
and then to multiply that result by9! = 362880.
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Figure 22: Essentially Equivalent Puzzles

In addition to simply rearranging the numbers, there are other things you could do to a puzzle that would
effectively leave it the same. For example, you could exchange any two columns (or rows) of numbers, as
long as the columns (or rows) pass through the same blocks. You can exchange any column (or row) of
blocks with another column (or row) of blocks. Finally, you can rotate the entries in a grid by any number
of quarter-turns, or you could mirror the grid across a diagonal.

Figure 22 shows some examples. If the puzzle on the left is theoriginal one, the one in the center shows
what is obtained with a trivial rearrangement of the digits1 through9 (every3 in the original was replaced
by a1, every1 by a4, and so on). The version on the right is also equivalent, but it is very difficult to see
how it is related to the puzzle on the left.

One obvious mathematical question is then, how many equivalent puzzles are there of each sudoku grid
in the sense above?

Another interesting mathematical question arises, and that is the following: given two puzzles that are
equivalent in the sense above, and given a sequence of steps toward the solution of one that are selected
from among those explained in earlier chapters, will those same steps work to solve the other puzzle. In
other words, if there is a swordfish position in one, will we arrive at a different swordfish in the other?
The answer is yes, but how would you go about proving it?

Notice that the puzzle on the left (and in the center) in figure22 is symmetric in the sense that if you mark
the squares where clues appear, they remain the same if the puzzle is rotated by 180 degrees about the
center. Other versions of symmetric puzzles could be obtained by mirroring the clue squares horizontally
or vertically. Most published puzzles have this form. This doesn’t necessarily make them easier or harder,
but it makes them look aesthetically better, in the same way that most crossword puzzles published in the
United States are also symmetric.

Another interesting question is this: given a symmetric puzzle, how many equivalent versions of it are
there?
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12 Counting Sudoku Grids

A sudoku grid is a special case of a9× 9 latin square3 with the additional constraint barring duplicates in
the blocks. There are a lot of9 × 9 latin squares:

5524751496156892842531225600.

Bertram Felgenhauer has counted the number of unique sudokugrids using a computer, and his result has
been verified by a number of other people, and that number turns out to be much smaller, but also huge:

6670903752021072936960 = 2
20

3
8
5
1
7
1
27704267971

1.

If we divide the number above by9! we obtain:

18383222420692992 = 2
13

3
4
27704267971

1.

13 Magic Sudoku Grids
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Figure 23: Possible Minimum Sudoku Puzzle

A latin square has all the digits in each row and column. A “magic square” is a latin square where each
diagonal also contains all the digits. Is there such a thing as a magic sudoku grid? The answer is yes,
and in fact there are a lot of them:4752, in fact, if we assume that the main diagonal contains the digits
in a fixed order. All4752 of the grids can be completed, and all of them in multiple ways. The puzzle
presented in figure 23 is a standard sudoku puzzle, except that it is easier since it requires that each of the
major diagonals contains all the digits from1 to 9.

14 Minimal Sudoku Puzzles

How many locations must be filled with numbers in an otherwiseempty grid that will guarantee that there
is a unique solution. As of the time this paper was written, the answer to that question is still unknown,

3A latin square is a grid where the only constraint is that there be no duplicate entries in any row or any column.
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but examples exist of puzzles that have only17 locations filled that do have a unique solution. Figure 14
shows such a puzzle on the left. Although this puzzle contains the minimum amount of information in
terms of initial clues, it is not, in fact, a difficult puzzle.The puzzle to the right in the same figure contains
18 clues, and is symmetric. This is the smallest known size for asymmetric sudoku puzzle.
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Figure 24: Minimal Puzzles

15 Measuring Sudoku Puzzle Difficulty

The difficulty of a sudoku puzzle has very little to do with thenumber of clues given initially. Usually, the
difficulty ratings are given to indicate how hard it would be for a human to solve the puzzle. A computer
program to solve sudoku puzzles is almost trivial to write: it merely needs to check if the current situation
is solved, and if not, make a guess in one of the squares that isnot yet filled, remembering the situation
before the guess. If that guess leads to a solution, great; otherwise, restore the grid to the state before the
guess was made and make another guess.

The problem with the guessing scheme is that the stack of guesses may get to be twenty or thirty deep and
it is impossible for a human to keep track of this, but trivialfor a computer. A much more typical method
to evaluate the difficulty of a puzzle is relative to the sortsof solution techniques that were presented in
the earlier sections of this article.

In this article, the techniques were introduced in an order that roughly corresponds to their difficulty for a
human. Any human can look at a row, column or block and see if there’s just one missing number and if
so, figure it out, et cetera.

So to test the difficulty of a problem, a reasonable method might be this. Try, in order of increasing
difficulty, the various techniques presented in this article. As soon as one succeeds, make that move,
and return to the beginning of the list of techniques. As the solution proceeds, keep track of the number
of times each technique was used. At the end, you’ll have a list of counts, and the more times difficult
techniques (like swordfish, coloring, or multi-coloring) were used, the more difficult the puzzle was.

The rankings seen in newspapers generally require that the first couple of rankings (say beginning and
intermediate) don’t use any technique other than those thatyield a value to assign to a square on each
move. In other words, they require only obvious candidates,naked and hidden singles to solve.

Published puzzles almost never require guessing and backtracking, but the methods used to assign a
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degree of difficulty vary from puzzle-maker to puzzle-maker.

16 Internet Resources

At the time of writing this article, the following are good resources for sudoku on the internet:

• http://www.geometer.org/puzzles: You can download the source code for the author’s pro-
gram that solves sudoku puzzles and can generate the graphics used in this article.

• http://www.websudoku.com/: This page generates sudoku games of varying degrees of diffi-
culty and allows you to solve the problem online.

• http://angusj.com/sudoku/: From this page you can download a program that runs under
Windows that will help you construct and solve sudoku problems. In addition, the page points to a
step-by-step guide for solving sudoku, similar to what appears in this document.

• http://www.simes.clara.co.uk/programs/sudoku.htm: This site points to some nice de-
scriptions of solution techniques, most of which are discussed in this article.

• http://www.setbb.com/phpbb/index.php: This page is a forum for people who want to solve
and construct sudoku puzzles as well as for people who want towrite computer programs to solve
sudoku automatically.

• http://www.madoverlord.com/projects/sudoku.t: A downloadable program for the Mac,
Windows and Linux that will solve almost any puzzle using logic alone. The distribution comes
with great documentation as well, that describes many of thetechniques presented here and others
besides.

17 Sample Puzzles

This section contains a set of puzzles that require the use ofspecific techniques to solve them. So if you
want to practice with the coloring technique, choose the coloring puzzle, et cetera. Solutions to all of
these appear in section 18.

18 Solutions

Figure 27 is a solution to the introductory puzzle in figure 1 on the left and on the right is the solution the
the extremely difficult puzzle in figure 21. The other figures are solutions to problems in section 17.
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Figure 25: X-Wing (left), Swordfish (center), XY-Wing (right)
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Figure 26: Coloring (left), Multi-coloring (center), Hidden Triple (right)
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Figure 27: Solution to: A Very Hard Sudoku Puzzle
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Figure 28: X-Wing (left), Swordfish (center), XY-Wing (right)
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Figure 29: Coloring (left), Multi-coloring (center), Hidden Triple (right)
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