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1 Introduction

Sudoku is a puzzle presented on a square grid that is usually, but is sometimes$6 x 16 or other
sizes. In this document, we will consider only thex 9 case, although almost everything that is said
can easily be extended to puzzles with different dimensiSnsloku puzzles can be found in many daily
newspapers, and there are thousands of references to i antehnet.
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Figure 1: An easy sudoku puzzle

The original grid has some of the squares filled with the diffitm 1 to 9 and the goal is to complete the
grid so that every row, column ardx 3 sub-grid (of which there ar@) contains each of the digits exactly
once. Some initial configurations admit zero solutions atheéis admit multiple solutions, but these are
usually considered to be invalid puzzles.

In figure 1 a (relatively easy) puzzle appears on the left.oli'ye never tried to solve a sudoku puzzle,
it would be very informative to try to solve this one now, ame svhat strategies you can come up with
before you read the rest of this article. It will probablyeakore time than you think, and you will get



much better with practice. And if you are a beginner, evemif'se used to working the New York Times
Sunday crossword in pen, use a pencil the first time you trglsuld

Sudoku is interesting both as a logical exercise (What aogl gtrategies for finding a solution?) and as
a mathematical object (How many sudoku grids are there? Hamynare essentially different? What
is the underlying mathematics and logic behind some saiugohniques?). All of these aspects will be
explored here.

We will first discuss various solution techniques and argtesl mathematics will be discussed along with
the technique. At the end we’ll include some informatiort tkamostly mathematical and probably not
of too much help in finding sudoku solutions.

In what follows, we will use the following terminology. Theiis a large literature on sudoku on the
internet, and as far as possible, we will try to use the samminelogy in this article as that which is
commonly used on the internet.

e A*“square” refers to one of th&l boxes in the sudoku grid, each of which is to be filled evehtual
with a digit from1 to 9.

e A “block” refers to a3 x 3 sub-block of the main puzzle in which all of the numbers mygtesar
exactly once in a solution. We will refer to a block by its amios and rows. Thus blogihi456
includes the squaresgl, g5, g6, h4, hb, h6, i4, i5 andi6.

e A“candidate” is a number that could possibly go into a squmatbe grid. Many methods we will
examine will eliminate candidates one after the other théte is a unique number that can go in
a square.

e Sometimes an argument will apply equally well to a row, cainblock, and to keep from having
to write “row, column or block” over and over, we may refert@s a “virtual line”. A typical use
of “virtual line” might be this: “If you know the values & of the9 entries in a virtual line, you can
always deduce the value of the missing one.” Indhe 9 sudoku puzzles there a2& such virtual
lines.

e Sometimes you would like to talk about all of the squares thahot contain the same number as
a given square since they are in the same row, column, or biblckse are sometimes called the
“buddies” of that square. For example, you might say sometlike, “If two buddies of a square
have only two possible candidates, then you can eliminatgetias candidates for the square.”

2 Obvious Strategies

We will begin with a few strategies that are in a sense totaltlyious, although searching for them in a
puzzle may sometimes be difficult, since there are a lot afhto look for. Most puzzles have a difficulty
rating, and almost all easy puzzles and many intermediatel@sican be completely solved using only
the techniques mentioned in this section. We’'ll begin wlith tnost obvious observations and proceed to
a few that are a bit more interesting. The methods are predeatighly in order of increasing difficulty
for a human. For a computer, completely different approgeine possible and are often simpler.



2.1 Unique Missing Candidate

If eight of the nine elements in any row, column or block (oirtwal line”) are already determined, the
final element has to be the one that is missing. This techrigqused a lot toward the end of a solution
when most of the squares are already filled in. A similar obsistatement is this: If eight of the nine
values are impossible in a given square, that square’s valist be the ninth.

2.2 Naked Singles
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Figure 2: Candidate Elimination and Naked Singles

For any given sudoku position, imagine listing all the caladiés froml to 9 in each unfilled square. Then,
for every square whose valuds determined, cross off every instancevtds a possible candidate in the
row, column and block (or, in all three of the virtual lines)which that square belongs. The remaining
values in each square represent possible values that cossibfy be inserted there. If, after such an
elimination of the impossible candidates, only a singlesgile value remains, that situation is referred to
as a “naked single” and that one remaining value can be assigrthe square.

In the example on the left side of figure 2 we see a sudoku pw#rtee the larger numbers in the squares
represent values that are already filled in. Squares whdsesvare not yet determined are filled with a
list of possible candidates, where the values in the corglstjuares have been used to eliminate some
values. After these obvious candidate eliminations haweiwed, we can see that the puzzle contains
three naked singles a2 andh3 (where & must be inserted), and a& (where a7 must be inserted).

Notice that once you have filled in these values, other nakweges will appear. For example, as soon as
the2 is inserted ah3, you can eliminate th2's as candidates in its row, column and block, and when this
is done 3 will become a naked single that must be filled withiThe position on the right side of figure 2
shows the result of the previous puzzle after the three sguaentioned in the previous paragraph have
been filled and the obvious candidates have been eliminadedthe unfilled squares.



2.3 Hidden Singles

Sometimes there are cells that do, in fact, have only onédlgjesalue based on the situation, but a simple
elimination of candidates in that square’s row, column dndlbdo not make it obvious. If you reexamine
the situation on the left side of figure 2, there is a hiddeglsim squarey2 whose value must b& The
two 5's in b1 ande3 require that thé that must appear in the lower-left block/(123) must occur in
column2. But there is only one available square in that block’s cal@that is not yet filled. Thu§ can

be placed in squarg2. The5 in squareg2 is “hidden” in the sense that without further examinatidn, i
appears that the valués2, 5, 8 and9 are all possible candidates.

An easy way to find hidden singles is to look in every virtuaélfor a candidate that appears in only one
of the squares. If that occurs, you've found a hidden single.

The example above is for a hidden single in a block. The samg tan occur in any virtual line. Using
the same example in figure 2, there is a hidden single in sqi%andere a3 must be placed. 8 must
appear somewhere in rady but3’s in the two leftmost blocks containing rawvalready contain & so the
3 must go ind7, d8 or d9. Since squareg7 andds are already filledd9 contains a hidden single.

The application of any of the techniques in this section imdiaiely assigns a value to a square. Most
puzzles that are ranked “easy” and many that are rankedtie@iate” can be completely solved using
only these methods.

The remainder of the methods that we will consider do notraat@ally allow you to fill in a square.
What they do is to eliminate certain candidates from cedginares. Obviously, once all the candidates
but one have been eliminated, then the value to be placedisduare is completely determined.

3 Locked Candidates

Sometimes you can find a block where the only possible positior a candidate are in one row (or
column) within that block. Since the block must contain thadidate, the candidate must appear in that
row (or column). But that means that you can eliminate thalchate as a possibility in the intersection
of that row (or column) with other blocks.

A similar situation can occur when a number that must go intovaor column can occur only within
one of the blocks that intersect that row or column. Thus #redidate must lie on the intersection of
the row/column and block and hence cannot be a candidateyinfahe other squares that make up the
block.

All of these situations are illustrated in figure 3. The blaelf 789 must contain &, and the only places
this can occur are in squar¢g and f8: both in row f. Therefore2 cannot be a candidate in any other
squares in rowf, including squarg’s (so f5 must contain &). Similarly, the2 in block ghi456 must lie

in column4 so2 cannot be a candidate in any other squares of that columuoging d4.

Finally, the5 that must occur in columf has to fall within the blockie 789 so5 cannot be a candidate
in any of the other square, including /7 and f8.
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Figure 3: Locked Candidates

4 Naked and Hidden Pairs, Triplets, Quads, ...

These are similar to naked singles, discussed in sectigre2c2pt that instead of having only one can-
didate in a cell, you have the same two candidates in two @@l|$n the case of naked triplets, the same
three candidates in three cells, et cetera).

The naked pair, triplet or quad can be in the same virtua) kimel when it occurs, those values must use
up all the squares. Thus those candidates are eliminateddny other square in that virtual line.

Figure 4 shows how a naked pair can be used. In squarasda8 the only candidates that appear ate a
and a7. That means that those squares must be filled with those mspibesome order. But that means
that the2 and7 cannot be in any of the other squares in that rov san be eliminated as a candidate in
a3 and both2 and7 can be eliminated as candidatesiih
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Figure 4: A Naked Pair

In the case of naked pairs, both squares must have exactiathe two candidates, but in the case of
naked triplets, quads, et cetera, the only requiremenaisthie three values be tloaly values appearing
in those squares in some virtual line. For example, if thrgeies in a row admit the following sets of
candidates{1, 3}, {3,7} and{1, 7} then it is impossible for &, 3 or 7 to appear in any other square of
that row.

The idea is fairly simple and is illustrated in figure 5. In ravequares:2, a8 anda9 contain the naked
triple consisting of the numbeifs 3 and7. Thus those numbers must appear in those squares in some



Figure 5: A Naked Triple

order. For that reason, the candidatesd3 can be eliminated from square$ anda5.

| 95, ¢, 4/3],°,1 8
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Figure 6: A Hidden Triple

Hidden pairs, triples and quads are related to naked paptes and quads in much the same way that
hidden singles are related to naked singles. In figure 6 densbw:. The only squares in rowin which

the valuesl, 4 and8 appear are in squares, :5 andi6. Therefore we can eliminate candidageand6
from square 1 and candidat8 from 5.

Remember, of course, that these hidden sets can appear wirargl line: a row, column, or block.
There is also no reason that there could not be a naked orrhgldetet, sextet, and so on, especially for
versions of sudoku that are larger tham 9.

5 X-Wings and Swordfish

An x-wing configuration occurs when the same candidate @cexactly twice in two rows and in the
same columns of those two rows. (Or similarly, if you exchatitge words “row” and “column” in the
previous sentence.) In the configuration on the left in figutiee candidat8 occurs twice in rows and
h and in those two rows, it appears in coluntand?. It does not matter that the candid&teccurs in
other places in the puzzle.

The squares where the x-wing candidateif this case) can go form a rectangle, so a pair of opposite
corners of that rectangle must contain them. In the exantisilemeans that th&'s are either inc2 and

h7 or they are inc7 andh2. Perhaps the fact that connecting the possible pairs waouid &n X', like

the X-wing fighters in Star Wars gives this strategy its name.

In any case, since the two corners contain the candidateth® squares in the columns or rows that
contain the corners of the rectangle can contain that catelith the example, we can thus conclude that
3 cannot be a candidate in squau&s 7 or 2.

A swordfish is just like an x-wing except that there must be¢tmows/columns with the three candidates
appearing in at most three columns/rows. As was the casenaktbd and hidden triples, for a swordfish

there is no requirement that the candidate to be in all thoséipns. The reasoning is similar to that used
for the x-wing, however: once you find a swordfish configuratihe candidate cannot appear in any
other squares of the three columns and rows.

A swordfish configuration appears on the right in figure 7. la tlase, the candidateisand the columns
that form the swordfish arg 5 and8. The valuer appears only in rows, f andi:. One7 must appear
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Figure 7: X-Wing (left) and Swordfish

in each of these rows and and each of the columns, so no otharesgin those rows and columns can
contain a7. Thus the candidatecan be eliminated from1, f1, f6, i6 and:9.

Of course there is nothing special abogdta3 configuration; “super-swordfish” with 4, 5, or 6 candidates
might be possible, but they are rare but not particularlfialift to spot. The “super-swordfish” with
rows and4 columns is sometimes called a “jellyfish”. If you are playiog a standar® x 9 grid, the
most complex situation you would need to look for would be Iyfish, since if there were & x 5
super-swordfish, there would have to be in additidn-a4 or smaller swordfish in the remaining rows or
columns. It's too bad that there’s no real need forihe5 super-swordfish, since in the web “literature”,
it's called a “squirmbag”.

6 The XY-Wing

The basic idea of the xy-wing is this: Sometimes a squarevhasandidates. If we assume that the first
is used, then that forces a certain conclusion. If, by assgihat the second is true, the same conclusion
is forced, then that conclusion must be true since no matterthe initial choice is made, the conclusion
must follow.

In the configuration in figure 8, suppose that there are twsiptescandidates in squarés, b5 ande2,
as shown. Consider the contents of squarelf X is there, then there must bezain 2 and therefore
Z cannot be a candidate &%. But the other possibility is that is aY'. In this caseps must beZ and
again,e5 cannot beZ. Thus, in a configuration like this, you can eliminaes a candidate in squatg.

In a similar way, consider the configuration on the leftin figQ. If eitherX orY istrue, the three squares
indicated by asterisks cannot ha¥eas a candidate. In a similar way, by examining the configomatin
the right in the same figuré; is eliminated as a candidate in two more squares indicatestayisks.
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Figure 8: XY-Wing
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Figure 9: XY-Wing

Obviously, the two configurations in figure 9 can be combirmechtike figure 10 wherZ can be elimi-
nated as a candidate in any of the squares marked with ais&ster

An example of an xy-wing in an actual puzzle appears in figdreNbtice that in squaret andf7 (both
in the same blockje f789) and in squar@l we have candidate, 9}, {3,9} and{8, 3}, respectively.
Because of this, we can eliminai@s a candidate from squarég f1 and f2.

7 Coloring and Multi-Coloring

Coloring and multi-coloring are techniques that infer e¢slbased on logical chains of deduction. The
coloring method, especially, is simple enough that it caddige by hand.

7.1 Simple Coloring

Consider the example in figure 12 where we consider a few squhat contain the candidate Let's
assume for now that these are the only possible locationisifothe puzzle. Certain virtual lines contain
exactly two places where the candidatean go: rows, row ¢, column3 and blockde f123. In each of
these virtual lines, exactly one of the possible squarescoatain al and once it is selected, the other
cannot.

But this creates a sort of “chain” jf1 containsl, thene3 must not, and since3 must notp3 must, seh6
must not,i6 must, and9 must not. If, on the other hang,l does not contain a one, the same series of
virtual line interactions will force an alternating set afrclusions and every square in the chain will be
forced to have the opposite value. In the figure we've markedstjuares with- and— according to the
assumption thaf1 does contain &, but of course it may be the case thfdtdoes not contain, and all
the+ and— signs would be interchanged. Rather than usingttend— characters that imply presence
or absence of a value it is easier simply to imagine coloraxghesquare in the chain black or white, and
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Figure 10: Combined XY-Wing
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Figure 11: XY-Wing Example

either all the black squares havé and all the white squares do not, or the opposite.

Suppose now that for some candidate you've discovered scicaid and have colored it in this alternat-
ing manner.

It may be that there are additional squares where the catedidald possibly occur that do not happen to
lie in the colored chain. In the example above, suppose squais colored black and so squai®must

be colored white. Consider the squdi®that lies at the intersection gfl’s row andi9’s column. Since
/1 andi9 have opposite colors, exactly one of themhl contain al, and therefore it is impossible for the
squaref9 to contain al, so1 can be eliminated as a possible candidate in that square.

There’s nothing special about a row-column intersectiony Ame two oppositely-colored squares “in-
tersect” via virtual lines or any sort in another square,dhedidate can be eliminated as a possibility in
that square.

This is probably easier to see with the concrete exampldagisd on the left in figure 13 where we
consider the interactions between squares Wik a possible candidate. In r@lvd1 anddb are the only
occurrences of candidate so we colord5 black andd1 white. Butdl and f3 are the only possibilities
for 1 in block def123, so sincedl is white, f3 is black. By similar reasoning, sing& is black,g3 and

1For astute readers, it may not really be a chain, but it coald tree, or even have loops, as long as the black/white atienn
is preserved.
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Figure 12: Simple Coloring

f8 are white. Sincg8 is white,e7 is black, and since7 is black,c7 is white. That's a pretty complicated
chain, but here’s what we've got: blackds, f3,e7} white: {d1, g3, f8,¢7}. A grid that displays just
the colored squares appears on the right in figure 13.

Squarecs is at the intersection af7’s row andd5’s column, bute7 is white andd5 is black, sol cannot
be a candidate in squatg. Similarly, squarey5 is in the same row ag3 and same column a& which
are white and black, respectively, s@lso cannot be a candidategh.

7.2 Multi-Coloring

Sometimes a position can be colored for a particular catelidad multiple coloring chains exist, but
none of them are usable to eliminate that candidate fronr atingares. If there are multiple chains, it is
worth looking for a multi-coloring situation.

Consider the puzzle in figure 14. Assume that in the partseptirzle that are not shown there are no
other places that the candiddatean occur. When this diagram is colored, there are two agjarhains.
Instead of using words like “black” and “white” we will useetters, likeA, B, a andb where theA and

a represent opposite colors, as do Bhandb, and so on. In figure 14 rowsandc and in columr8 there
are only two possible locations for candidate

When this grid is colored, it will look something like thisgsares:1 and f3 have colorA and square3
has colon. Square:2 has colob and squareb has coloB. (Note that the colors assigned are arbitrary.
All that matters is that square$ and f3 have the same color that is the opposite®find thata2 and

a5 have opposite colors that are different from the other assigcolors. Note that none of the other
squares with as a candidate can be colored, since all are in virtual linssmore than two squares that
potentially could contain the candidate

If we consider the colord” as standing for the sentence: “Every square containingthar a contains a

10
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Figure 14: Multi-coloring

1,” and so on, then we can write little logical expressionsdating the relationships among the various
colors when they are interpreted as sentences. The obvimssare of the form:d'= - A”or “A = —

a” (where the logical symbol+" means “not”). In other words, i is true themA is not, and vice-versa.

Although the values of non-opposite colors do not necdgsaave anything to do with each other, in
figure 14, the paia andb, for example are linked, since they occur in the same bldckid true, therb
cannot be, and vice-versa, but it may be true that bahdb are false. We will express this relationship
as “alb” and read it as 4 excludes”. Obviously, if alb thenb!a?. Also, it's obvious in the configuration
in figure 14 thab!A.

Another way to think ofalb is as “If a is true then so i8.” Similarly, it means “Ifb is true then so is
A If alb then at least one aof or b must be false. That means that at least ona of B must be true.
That means that any square at the generalized intersedtimuares colored andB must not allow the

2f you examine the truth table farlb you will find that it is equivalent to the “nand” (“A nand B” isie same as “not(A and
B)") logical operator that’s heavily used in computer haadevlogic designs.

11



candidate since one of the two squares coldred B must contain the candidate. In figure 14, this means
that1 cannot be a candidate in squdi®

To condense all of the above into a single statement, we khawifta!b for some candidate then any
square at the generalized intersectioM@&ndB cannot contain that candidate.
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Figure 15: Multicoloring Example: Coloring on Right

But much more can be done. In complex situations, there maya® independent color chains with
colorsA anda, B andb, C andc, and so on. When that occurs, we need to look for consequentes
following inference:

If a'lb andB!c thenalc.

It's not hard to see why: 1§ is true,b is not, soB is true, and the second exclusion implies thét not.
The reasoning is trivially reversed to show that i§ true thera is not, so we obtaia!c.

Thus to do multi-coloring for a particular candidate, pred¢as follows:
e Construct all possible color chains for the diagram.
e Find all exclusionary relationships from pairs of colorattehare the same generalized lines.

e Take the collection of relationships and complete it torigmsitive closure using the idea that if
(alb andB!c) thenalc.

e For every exclusionary pair in the transitive closure, fietheralized intersections of squares col-
ored with colors opposite to those in the pair, and elimitia¢ecandidate as a possibilty from all of
them.

Let's look at a very complex multi-coloring application.eSfigure 15 where only the presence of squares

that admit the candidate are marked (all, of course, might admit other candidates).th@ left is the
complete grid and on the right is a simplified version wherly ¢ime squares admitting candiddiere

12



shown, and all of the color chains are displayed. It is an léxtieexercise to look at the diagram on the
right to make certain that you understand exactly how alkthler chains are constructed.

The next step in the application of multi-color is to find &létexclusionary pairs, and the initial list is the
following. Note that the “I” operation is commutative, soyibu thinka!b should be in the list and it is
not, be sure to look fos!a as well.

AlE alb Dle Ald AIC
Alc blE AID Cld

From these initial exclusions, a number of others can becktiuFor example, froralb andA!d we can
conclude thab!d. Note that to make this implication, we are implicitly usitmg fact that!b andb!a are
equivalent.

In fact, if we make all such deductions, and then all dedustistom those, and so on, there are ten
additional exclusions that we find:

bld blC blc bID C(Cle
A'A  Alb ble blb Ale

For most of them, we need to look for generalized intersastiof the opposites of the exclusionary
values. For example, sin@de and there is an in ¢l and aE in a4, then9 cannot be a candidate 6.
Also, since we've goA!A andb!b we can conclude thatandB are true. To make it easier to check the
consequences of these exclusionary implications, figughb@/s the complete solution to the puzzle in
figure 15.

1 2 3 45 6 7 8 9
al4/8/3/16/9 2 7 5
b|2/5/1/4/ 7/ 3 9 8 §
c|9/7/6/5/ 2 8 4 3 1
d/5/2/9/8/ 4/ 7 6 1 3
e|1/6/8/3/ 5 27 4 9
134791 6/ 8 § 2
918/3|/5/2/9 41 g 7
h6/1/2/7 8/ 5 3 9 4
i17/9/4/6/3 15 2 8§

Figure 16: Solution to Multicoloring Example

8 Unigue Solution Constraints

If you know that the puzzle has a unique solution, which amgo@able puzzle should, sometimes that
information can eliminate some candidates. For example dgamine the example in figure 17.

In row ¢, columns4 and6, the only possible candidates drand2. But in row g, columns4 and6, the
candidates arg, 2 and8. We claim tha® must appear ig4 or g6. If it does not, then the four corners of
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1 2 3 4 5 6 7 8 9
a6 ,71/7 594, 2
b|2/9 558+ 517
|4 77 |5 .
15|64 |4e 1% 2] 7] &
el12 576/ ,48
fl ol 7% 0 2], |116|5
o B[ A 7]L]4
h8 4 ¢ §9/ 7|5 21
701 °] . 415] .46

Figure 17: Uniqueness Constraint

the square4, c6, g4 andg6 will all have exactly the same two candidatésnd2, so we could assign the
valuel to either pair of opposite corners, and both must yield vadidtions. If there is a unique solution,
this cannot occur, so one 9f or g6 must contain the valug. But if that’s the case, squaié cannot be
8, so the candidat® can be eliminated from squai4. In addition, since eitheg4 or g6 must bes, g8
cannot be8 since it is in the same row as the other two.

In the same figure, a similar situation appears in anotheepl&ee if you can find it. Hint: it column-
oriented instead of row-oriented.

a
2 2
b
7 7
7 7

Figure 18: An illegal block

Let’s go back and see exactly what is going on, and from thel| ae able to find a number of techniques
that are based on the same general idea. Figure 18 showsallegsil block. Anything at all can occur
in the squares that are not circled, but note that an assiginofi@ 2 or a7 to any of the circled squares
forces the values of the others in an alternating pattermaBy of the squares can be assignedoa a7
and the resulting pattern will be legal, and this means thezdéwo valid solutions to the puzzle.

This means that if some assignment causes an illegal blde& formed, that assignment is impossible,
and we can use that fact to eliminate certain possibiliiesye did in the example in figure 17. Note that
the four corners must not only form a rectangle, but they rhastrranged so that two pairs of adjacent
corners must lie within the same blocks. If the four cornarsn four different blocks, then constraints
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from those different blocks can force the values one way @other.

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
a a a 4 :
b 23 2 b 23 23 b 23 2
7 7 7 7 7 7
2z 3 7 3 2 3 7 3 2 3 7 3
C C clla
7 7 7 7 7 7

Figure 19: Uniqueness Considerations

Now let's examine some variations of this theme. In the régt@examples in this section, we’ll assume
that empty squares can be filled with any valid puzzle enteespty or determined. In figure 19 on the
left we see something that is almost the same as what we saguie fL8 and the only thing that makes
it legal is the presence of the possibility of3an squarebl. If it is not a 3, then we would have the
illegal block, so there must bedin squarebl. Note that if, in the figure, squatd had contained the
possibilities2, 3,4, and7, at least the two possibilitiesand7 could still be eliminated as possibilities,
so only a3 or a4 could be entered in that square.

The example in the middle of figure 19 is similar to the origimeample in this section except that the
additional number occurs in two different blocks insteadoé. As before, at least one of those squares
must contain the numbes {n this case), so the valukecan be eliminated from any of the other squares
in that row (rowd, in this case), but not in either of the blocks, since the tia¢ i forced to b& might

be in the other block.

The example on the right in figure 19 illustrates another gbdeduction that could be made. We know
that at least one dfl andcl must contain a number other thar2ar a 7, but we don’'t know which
one. If we think of the combination of the two squares as aabunit, we do know that this unit will
contain either @& or a4. This two-square unit, together with squae(which has3 and4 as its unique
possibilities) means that no other square in the bldek 23 can contain & or a4. If the 34 square had
been inal we could in addition eliminat8 and4 as candidates from any of the other squares in column
1 outside the first block.

Note that we can have bott8aand a4 in either or both squaréd andcl1 in this example on the right. As
long as both occur, the argument holds. Also note that iBthand4’s appeared in row and the entries
in row c were both27, and the34 square were in row we could eliminate any mor&s and4’s in that
row.

9 Forcing Chains

This method is almost like guessing, but it is a form of guggshat is not too hard for a human to do.
There are various types of forcing chains, but the easiastderstand works only with cells that contain
two candidates.

The idea is this: for each of the two-candidate cells, térgbt set the value of that cell to the first value
and see if that forces any other two-candidate cells to takealue. If so, find additional two-candidate
cells whose values are forced and so on until there are no foorimg moves. Then repeat the same
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1 2 3 4 5 6 7 8 9
a[*[4]8[7] 9] TiTe]™
o[ 5" 8 2 7 ;
|’ 17|54 1.6 8
1/3/8/5/2 194 7 @
|7 6235 48 91
r[4/19/6 78775
9187 6/4 35,7 ",
nl's, 24,6 28 7
.87 6

Figure 20: Forcing Chains

operation assuming that the original cell had the otherezalu

If, after making all possible forced moves with one assuorpéind with the other, there exists a cell that
is forced to the same value, no matter what, then that mustebeaiue for that cell.

As an example, consider the example in figure 20, and let'Blveigh cell 563 which can contain either a
lora3. If b3 =1, theni3 = 3, soh2 = 9, soh4 = 1. On the other hand, i3 = 3 theni3 = 1s0i4 =9
soh4 = 1. In other words, it doesn’t matter which value we assumetihtdkes; either assumption leads
to the conclusion that4 = 1, so we can go ahead and assigio cell h4.

10 Guessing

The methods above will solve almost every sudoku puzzleybatwill find in newspapers, and in fact,
you will probably hardly ever need to use anything as compkerulti-coloring to solve such puzzles.
But there do exist puzzles that do have a unique solutioncaanhot be solved using all the methods
above.

One method that will always work, although from time to tirheeéeds to be applied recursively, is simply
making a guess and examining the consequences of the gnessituation that seems impossible, choose
a square that has more than one possible candidate, rem#mals#uation, make a guess at the value for
that square and solve the resulting puzzle. If you can stlwgéat—you're done. If that puzzle cannot
be solved, then the guess you made must be incorrect, it calinieated as a candidate for that square,
and you can return to the saved puzzle and try to solve it withaandidate eliminated.

Obviously, when you try to solve the puzzle after having madeess, you may arrive at another situation
where another guess is required, in which case a secondlayetss must be made, and so on. But since
the method always eventually eliminates candidates, yost mnuive at the solution, if there is one. In
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1 2 3 4 5 6 7 8
al'sel? 1561827“29 4%
b”e71561829122 5
c| 347 [ike" ei® 5| Ze 7| e
a| %8747 13
e|l4 6 3|'s,8"", |55, ",
f 1%9“91591551%3 7 1453 8 42§
9|8 izjizg 7 |is°)s :45%15§i§
h 713131531531245%2 8
i|" 54,26 8] ..

Figure 21: A Very Hard Sudoku Puzzle

computer science, this technique is known as a recursivetsegigure 21 is an example of such a puzzle
that cannot be cracked with any of the methods discussed sadapt for guessing. The solution to this
puzzle can be found in section 18.

11 Equivalent Puzzles

There is no reason that the numbéthrough9 need to be used for a sudoku problem. We never do any
arithmetic with them: they simply represehntlifferent symbols and solving the puzzle consists of trying
to place these symbols in a grid subject to various congsrain

In fact, the construction of a valid completed sudoku grigdgiivalent to a graph-theoretic coloring
problem in the following sense. Imagine that every one ofthequares is a vertex in a graph, and there
is an edge connecting every pair of vertices that lie in tlheeseow, same column, or same block. Each
vertex will be connected t20 other vertices, so the sudoku graph will consis8of 20/2 = 810 edges.
Finding a valid sudoku grid amounts to finding a way to coleribrtices of the graph with nine different
colors such that no two adjacent vertices share the same colo

Since the symbols don’t matter, we could use the lettethroughl or any other set of nine distinct
symbols to represent what is essentially the same sudokalepuzwe take a valid grid and exchange the
numbersl and2, this is also essentially the same puzzle. In fact, any ptation of the values through

9 will also yield an equivalent puzzle, so there 8te= 362880 versions of every puzzle available simply
by rearranging the digits.

If you were trying to calculate how many grids there are, adgapproach would be to assume that the
top row consists of the numbetghrough9 in order, to count the number of grids of that type there are,
and then to multiply that result B/ = 362880.
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Figure 22: Essentially Equivalent Puzzles

In addition to simply rearranging the numbers, there areratiings you could do to a puzzle that would
effectively leave it the same. For example, you could exglamy two columns (or rows) of numbers, as
long as the columns (or rows) pass through the same blockscaio exchange any column (or row) of
blocks with another column (or row) of blocks. Finally, yoancrotate the entries in a grid by any number
of quarter-turns, or you could mirror the grid across a diedo

Figure 22 shows some examples. If the puzzle on the left istigénal one, the one in the center shows
what is obtained with a trivial rearrangement of the digitesrough9 (every3 in the original was replaced
by al, everyl by a4, and so on). The version on the right is also equivalent,thsitiery difficult to see
how it is related to the puzzle on the left.

One obvious mathematical question is then, how many e@nvaluzzles are there of each sudoku grid
in the sense above?

Another interesting mathematical question arises, andishthe following: given two puzzles that are
equivalent in the sense above, and given a sequence of ste@sltthe solution of one that are selected
from among those explained in earlier chapters, will th@saesteps work to solve the other puzzle. In
other words, if there is a swordfish position in one, will weiar at a different swordfish in the other?
The answer is yes, but how would you go about proving it?

Notice that the puzzle on the left (and in the center) in fiités symmetric in the sense that if you mark
the squares where clues appear, they remain the same if fakepsi rotated by 180 degrees about the
center. Other versions of symmetric puzzles could be obtHy mirroring the clue squares horizontally
or vertically. Most published puzzles have this form. Thogsin't necessarily make them easier or harder,
but it makes them look aesthetically better, in the same Wwalrhost crossword puzzles published in the
United States are also symmetric.

Another interesting question is this: given a symmetriczb&izhow many equivalent versions of it are
there?
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12 Counting Sudoku Grids

A sudoku grid is a special case of & 9 latin squaréwith the additional constraint barring duplicates in
the blocks. There are a lot 6fx 9 latin squares:

5524751496156892842531225600.

Bertram Felgenhauer has counted the number of unique sugtimlsuusing a computer, and his result has
been verified by a number of other people, and that numbes turnto be much smaller, but also huge:

6670903752021072936960 = 2203851 7127704267971

If we divide the number above [} we obtain:

18383222420692992 = 2'33%27704267971".

13 Magic Sudoku Grids

N
©
N
o

Figure 23: Possible Minimum Sudoku Puzzle

A latin square has all the digits in each row and column. A “foaguare” is a latin square where each
diagonal also contains all the digits. Is there such a thing anagic sudoku grid? The answer is yes,
and in fact there are a lot of them752, in fact, if we assume that the main diagonal contains thisdig
in a fixed order. All4752 of the grids can be completed, and all of them in multiple walise puzzle
presented in figure 23 is a standard sudoku puzzle, except ihaasier since it requires that each of the
major diagonals contains all the digits franto 9.

14 Minimal Sudoku Puzzles

How many locations must be filled with numbers in an otheneispty grid that will guarantee that there
is a unique solution. As of the time this paper was writter,dhswer to that question is still unknown,

3A latin square is a grid where the only constraint is thatetse no duplicate entries in any row or any column.
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but examples exist of puzzles that have otifylocations filled that do have a unique solution. Figure 14
shows such a puzzle on the left. Although this puzzle coatdie minimum amount of information in
terms of initial clues, itis not, in fact, a difficult puzzl€he puzzle to the right in the same figure contains
18 clues, and is symmetric. This is the smallest known size 8&ymametric sudoku puzzle.

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
a 61 a 8 3|2
b 9116 8 b 6|1
c| 7 c 5
d 2 d| 6 3

37 1 7
f 4 6 f 2 8
9 7|3 9 6
h 81 h 8|2
i 5 i153 9

Figure 24: Minimal Puzzles

15 Measuring Sudoku Puzzle Difficulty

The difficulty of a sudoku puzzle has very little to do with thember of clues given initially. Usually, the
difficulty ratings are given to indicate how hard it would lme & human to solve the puzzle. A computer
program to solve sudoku puzzles is almost trivial to writenérely needs to check if the current situation
is solved, and if not, make a guess in one of the squares that iget filled, remembering the situation
before the guess. If that guess leads to a solution, gréedrwise, restore the grid to the state before the
guess was made and make another guess.

The problem with the guessing scheme is that the stack osgaesay get to be twenty or thirty deep and
it is impossible for a human to keep track of this, but trif@ a computer. A much more typical method
to evaluate the difficulty of a puzzle is relative to the saftsolution techniques that were presented in
the earlier sections of this article.

In this article, the techniques were introduced in an ordat toughly corresponds to their difficulty for a
human. Any human can look at a row, column or block and seeikth just one missing number and if
so, figure it out, et cetera.

So to test the difficulty of a problem, a reasonable methodhtriig this. Try, in order of increasing
difficulty, the various techniques presented in this agticAs soon as one succeeds, make that move,
and return to the beginning of the list of techniques. As thlat®n proceeds, keep track of the number
of times each technique was used. At the end, you'll havet afisounts, and the more times difficult
techniques (like swordfish, coloring, or multi-coloringgre used, the more difficult the puzzle was.

The rankings seen in newspapers generally require thatréteediuple of rankings (say beginning and
intermediate) don’t use any technique other than thoseyibk#t a value to assign to a square on each
move. In other words, they require only obvious candidataked and hidden singles to solve.

Published puzzles almost never require guessing and bakkig, but the methods used to assign a
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degree of difficulty vary from puzzle-maker to puzzle-maker

16 Internet Resources
At the time of writing this article, the following are goodsaurces for sudoku on the internet:

e http://wuw.geometer.org/puzzles: You can download the source code for the author’s pro-
gram that solves sudoku puzzles and can generate the gsaysad in this article.

e http://www.websudoku.com/: This page generates sudoku games of varying degrees of diffi
culty and allows you to solve the problem online.

e http://angusj.com/sudoku/: From this page you can download a program that runs under
Windows that will help you construct and solve sudoku protdeln addition, the page points to a
step-by-step guide for solving sudoku, similar to what @ppén this document.

e http://www.simes.clara.co.uk/programs/sudoku.htm: This site points to some nice de-
scriptions of solution techniques, most of which are disedsn this article.

e http://wuw.setbb.com/phpbb/index.php: This page is a forum for people who want to solve
and construct sudoku puzzles as well as for people who wamtite computer programs to solve
sudoku automatically.

e http://www.madoverlord.com/projects/sudoku.t: A downloadable program for the Mac,
Windows and Linux that will solve almost any puzzle usingitoglone. The distribution comes
with great documentation as well, that describes many ofableniques presented here and others
besides.

17 Sample Puzzles

This section contains a set of puzzles that require the uspagiific techniques to solve them. So if you
want to practice with the coloring technique, choose therad puzzle, et cetera. Solutions to all of
these appear in section 18.

18 Solutions

Figure 27 is a solution to the introductory puzzle in figurenltlee left and on the right is the solution the
the extremely difficult puzzle in figure 21. The other figures solutions to problems in section 17.
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Figure 25: X-Wing (left), Swordfish (center), XY-Wing (righ
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Figure 26: Coloring (left), Multi-coloring (center), Hiéd Triple (right)
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9/5/1]2,6 8 4 3 17

al2/1/5/8/ 7,6/ 9 4

b|6|7|83 9 4 2 1

c|3/4/9/1 25 8 7 ¢
d/5/8|7/4/ 3 2 1 ¢

e|4/6/3|/9/8/ 1 7 § 2

f

9182|674 3 5 9 1
h7/3/4/5 1 9 6 2 §

3

9

5

972|158 413 6

a|l6/2/4/8 71 9 9

b|1/9|/3|4|/ 6/ 5 8 7 2
c|7/5/8/3/9 26 1 4
d/2/1/9/6/ 4/ 3 5 8 7
e|5/8/6/7 2 9 3 4 1
143715 8 2 §

9/3/4|/5/2/ 16/ 7 9 8§
h 86|19 37 4 2

Figure 27: Solution to: A Very Hard Sudoku Puzzle
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Figure 28: X-Wing (left), Swordfish (center), XY-Wing (righ

WTOTM TSN [ [NTO XY
~NNHO MO MON
DO |[N[O[M[~[—[00
O [F|N[HIMNO[O[OM
DM O |00 ||~
AN OMAN 0T O
MN~IN|0 0O | (N |-
NOO|M| | |00~
< |0 N IO M| ©
@ 9 0O T © +« O £ .
OO TNTO TN [T
S ~AMDHO[0N O
N[O[M[HdO~MNWO O[S
MN[IF O[O N[O [ O
OO0 T M NN
O =N OO | (0m
MO ST|O N | (1|
A M|0 O T |N
O NO IO T [ MO~
@ 9 0O T © « O £ .
NTO TSSO TM T TOO TN
SN O [NMH[O0M[T~O
Mo ~oO[O[d[N
OF|O|M | O[N]~
MN|—H |0~ (1O |©
O~ ON T OM| -
MNOMW || N O |
OO0 IMMIN|H[©O.0
AN N0 O ™M
@ 9 0O T © +« O £ .

Figure 29: Coloring (left), Multi-coloring (center), Hiéd Triple (right)
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