INGENIERÍA INDUSTRIAL

•••••••

••••••

• • • • • • • • • • • • •

••••••

••••••

••••••

•••••

• • • • • • • • • • • • •

••••••

••••••

•••••••

••••••

••••••

••••••

••••••

•••••

• • • • • • • • • • • • •

••••••

••••••

• • • • • • • • • • • • •

• • • • • • • • • • • • •

••••••

••••••

•••••

••••••

••••••

••••••

••••••

• • • • • • • • • • • • •

• • • • • • • • • • • • •

••••••

••••••

••••••

••••••

••••••

••••••

••••••

.....\,...

•••••••••

••••••

••••••

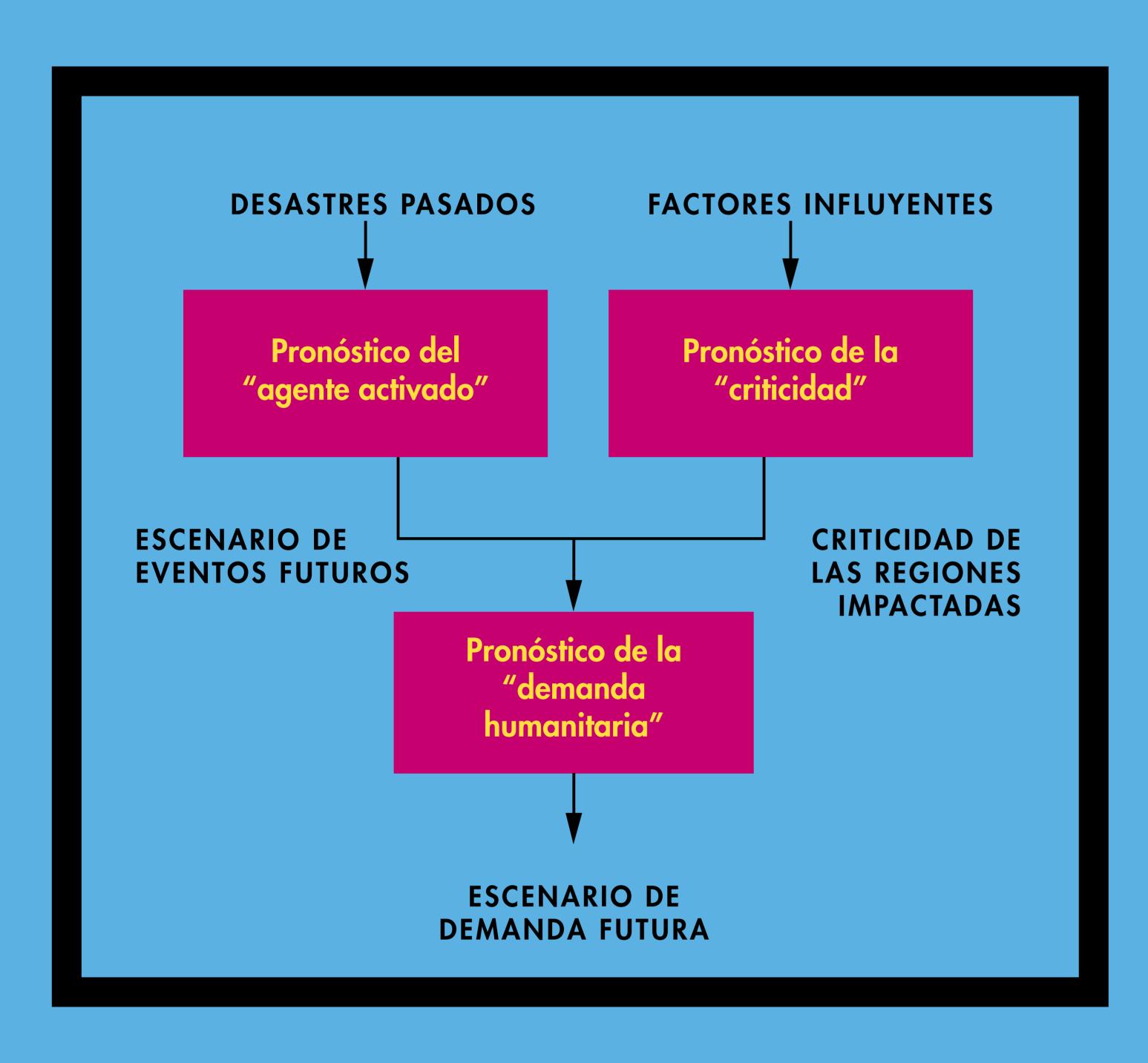
.

Hacia una metodología cualitativa de medición del pronóstico de demanda humanitaria en caso de desastres

Esta investigación propone una metodología de dos pasos para predecir aproximadamente las necesidades futuras en materia de operaciones de ayuda humanitaria. Esta contribución se basa en regresión simple y en el cálculo de la tasa de vulnerabilidad apoyada en factores cualitativos. Finalmente se presenta un ejemplo numérico basado en el caso de Perú.

INVESTIGADORES RESPONSABLES

Jorge Vargas Florez (PUCP), Aurélie Charles (Decision & Information Sciences for Production Systems Laboratory) y Matthieu Lauras (Centre de Génie Industriel), Lionel Dupont (Centre de Génie Industriel)


FINANCIADO POR

Beca Paul Rivet, Pontificia Universidad Católica del Perú, Embajada Francesa en Perú

INSTITUCIONES INVOLUCRADAS

Pontificia Universidad Católica del Perú, Université de Toulouse (Francia), l'Ecole des Mines d'Albi (Francia), l'Université Lumière Lyon 2 (Francia), Université de Toulouse, l'Ecole des Mines d'Albi

$G_s = G_{ref} \times V_s$ con $V_s = \Sigma_i (\alpha_i \times X_i / R_i)$

Donde:

- G_s es el Nivel de Gravedad Esperada (número de víctimas) asociado con el estudio del escenario s (i.e. área potencial impactada);
- G_{ref} es el Nivel de Gravedad (número de víctimas) de un desastre previo referido ref;
- V_s es el ratio de estimación de la vulnerabilidad asociado al estudio del escenario s;
- i es el índice del criterio de vulnerabilidad {densidad; IDH; accesibilidad; telecomunicaciones};
- α_i es el peso dado a cada criterio ($\Sigma_i \alpha_i = 1$);
- X, es el valor de cada criterio asociado al escenario s ;
- R, es el valor de cada criterio asociado al desastre referido ref.

APLICACIÓN NUMÉRICA						
CÁLCULO DE LA GRAVEDAD DEL DESASTRE	COEFICIENTE	LIMA		CUSCO		VALOR DE REFERENCIA
		VALOR	%	VALOR	%	PISCO 2007
Densidad (habitante/Km²)	0.4	3126	9473	680	2061	33
Índice de Desarrollo Humano	0.3	75	96	65	111	72
Accesibilidad (Km de caminos pavimentados/ 1000 habitantes)	0.2	30	67	14	143	20
Telecomunicaciones (celulares/1000 habitantes)	0.1	1200	67	537	149	800
Ratio estimado de vulnerabilidad			38379		9009	
Nivel esperado de gravedad			22874		5370	596