INVERSIÓN (No incluye IGV)

Ing. Colegiado Habilitado Estudiante Pre Grado Público en General

US\$ 100.00 US\$ 80.00

US\$ 80.00 US\$ 200.00

Puede realizar su pago en el Banco BCP a nombre de Eléctrica, a las siguientes cuentas corrientes:

° En dólares 193-1478312-1-53 ° En soles 193-1473002-0-07 Una vez realizado el depósito deberá enviarnos la copia del voucher de pago a los correos electrónicos:

electrica@ciplima.org.pe / electrica1@ciplima.org.pe

Para la recoger del CDLima la boleta o factura, acercarse al Capítulo con su voucher original.

RECURSOS DIDÁCTICOS

Se entregará:

- Libro ATERRAMIENTO ELÉCTRICO, 1ra. edición en español, de autoría del expositor.
- · Material de apunte.
- Ejercicios prácticos y teóricos.

Se servirán coffee breaks.

Se otorgará Certificado a nombre del Consejo Departamental de Lima del CIP

DIRIGIDO A

INGENIEROS ELECTRICISTAS, ELECTRÓNICOS, MECÁNICOS, CIVILES E INDUSTRIALES QUE DESARROLLAN ACTIVIDADES DE DISEÑO, OPERACIÓN Y EXPLOTACIÓN ELÉCTRICA O DE INSTALACIONES DE PRODUCCIÓN INDUSTRIAL, SISTEMAS DE COMUNICACIONES Y TRANSMISIÓN DE DATOS Y ESTUDIANTES EN GENERAL.

Duración: 25 horas / aula

INFORMES E INSCRIPCIONES

CAPÍTULO DE INGENIERÍA ELÉCTRICA CALLE MARCONI 210 - SAN ISIDRO TELÉFONOS 202-5035 ó 202-5010 TELEFAX: 422-9139

electrica@ciplima.org.pe electrica1@ciplima.org.pe www.electrica-cdl.com

COLEGIO DE INGENIEROS DEL PERÚ CONSEJO DEPARTAMENTAL DE LIMA CAPÍTULO DE INGENIERÍA ELÉCTRICA

Seminario Internacional ATERRAMIENTO ELÉCTRICO

Del Sábado 10 al Miércoles 14

de Marzo del 2012

Sábado y Domingo: 9:00 a.m. - 2:00 p.m. Lunes a Miércoles: 5:00 p.m. - 10:00 p.m.

PRESENTACIÓN

El Capítulo de Ingeniería Eléctrica del Consejo Departamental presentar el Seminario Internacional: "Aterramiento Eléctrico" de temas de gran connotación técnica, se complace en de Lima del CIP en su empeño de impulsar la actualización

Comunicaciones y Sistemas de Procesamientos de Datos mantenimiento de Sistemas Eléctricos, sistemas de consultoría. El tema se aplica también a la operación y superados por los profesionales dedicados al trabajo de Puesta a Tierra, aplicadas a la infraestructura eléctrica en exigencias y condicionantes que deben ser adecuadamente todos los niveles de tensión y usos eléctricos, son objeto de Las técnicas del Diseño y Ejecución de los Sistemas de

diseño de aterramientos como para la ejecución física de los El Seminario Internacional tiene como finalidad actualizar la teoría y la práctica de los conceptos de base, tanto para el mismos, pasando por la etapa principal del procesamiento

EXPOSITOR

ING. GERALDO KINDERMANN

Dpto. Ing. Eléctrica de la Universidad Federal de Santa Profesor de graduados y post graduados. Catarina (UFSC) - Brasil.

CURSOS EXPUESTOS:

siguientes cursos de Electrobras: CEDIS, CPT, CMO, CPJ ELECTROLIMA (PERU), Universidad Mayor de San Andrés CREA - Palmas - Tocantins, ELFEC (Cochabamba - Bolivia) MACKENZIE- SP., ESCELSA, UFPA, SINDUSCON - RS (La Paz - Bolivia) y Colegio de Ingenieros del Perú; y los UFBA, CELESC, COELCE, CEMAR, ETF/SC de Antofagasta (Chile), U.T.E (Uruguay),

PROGRAMA

"ATERRAMIENTO ELECTRICO" SEMINARIO INTERNACIONAL

- Objetivo y finalidades del aterramiento
- Resistividad del suelo.
- Parámetros que influyen en la resistividad del suelo.
- Elementos del aterramiento.
- Electrodos de tierra.
- Tipos de sistemas eléctricos
- Proyecto de aterramiento.
- Medición de resistividad del suelo
- Método de Wenner.
- Cuidados en la medición de la resistividad
- Estratificación del suelo.
- Estratificación del suelo a través de las mediciones por el método de Wenner.
- Método de Estratificación del suelo
- Método de 2 camadas.
- Método simplificado.
- Método de Yocogawa
- Método de Pirson.
- Dimensionamiento de sistemas de aterramiento por electrodos verticales.
- Interferencia entre los electrodos.
- Electrodos alineados.
- Electrodos en triángulo.
- Electrodos en cuadrado vacio y lleno.
- Electrodos en círculo.
- Electrodos profundos.
- Técnicas de colocación de electrodos profundos
- Resistencia de aterramiento de conductores horizontalmente en el suelo. enrollados en forma de anillo enterrados
- Conductores enterrados horizontalmente en el suelo.
- Aterramiento de zapatas de edificio
- Tratamiento químico del suelo
- Coeficiente de reducción debido al tratamiento químico.
- Variación de la resistencia de tierra con el tratamiento
- Aplicación práctica del tratamiento químico
- Resistividad aparente del suelo.
- Reducción de camadas en el suelo.
- Resistividad aparente para cualquier tipo de aterramiento.
- * Curva de Endrenyi.
- Choque eléctrico

- Comportamiento de la corriente eléctrica por el cuerpo
- * Fibrilación ventricular debido al choque eléctrico
- * Límite de la corriente X tiempo para no causar fibrilación ventricular.
- * Potencial de toque. Límites máximos
- * Potencial de paso. Límites máximos
- * Medida del potencial de paso y toque
- * Malla de tierra.
- * Proyecto del dimensionamiento de una malla de tierra.
- * Dimensionamiento de los conductores de la malla.
- * Dimensionamiento del cable de conexión
- * Dimensionamiento del espaciamiento de la malla.
- * Resistencia de la malla.
- * Sensibilidad del relé del neutro
- * Coeficiente de la malla.
- * Coeficiente de irregularidad
- * Tensión de malla.
- * Coeficiente Kp.
- * Tensión de paso en la periferia de la malla.
- * Coeficiente perimetral
- * Tensión en el perimetro.
- * Mejora en la malla.
- * Malla de ecualización.
- * Medición de la resistencia de aterramiento.
- * Métodos de medición.
- * Cuidados en la medición.
- * Corrosión en sistemas de aterramiento.
- * Tabla de electronegatividad de los metales
- Corrientes galvánicas.
- Corrientes impuestas.
- * Heterogeneidad del material
- * Heterogeneidad de electrolitos
- * Acción de las corrientes dispersas.
- Protección catódica.
- Protección catódica por corrientes impresas
- * Protección catódica por ánodos de sacrificio.
- * Reenganchador, su influencia en el aterramiento
- * Impulsos de tensión en el suelo.
- * Gradiente de ionización.
- * Zona de ionización del suelo.
- * Resistencia al impulso de tensión.
- * Corrientes que circulan por el suelo debido al corto-circuito en el sistema.
- * Corriente efectiva por la malla.
- * Corriente auto-neutralizada